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Abstract. We study the helicity amplitudes of the process γγ → ZZ in the Standard Model at high energy.
These amplitudes receive contributions from the W and charged quark and lepton loops, analogous to those
encountered in the γγ → γγ, γZ cases studied before. But γγ → ZZ also receives contributions from the
Higgs s-channel poles involving the effective Higgs-γγ vertex. At energies & 300GeV , the amplitudes in
all three processes are mainly helicity-conserving and almost purely imaginary; which renders them a very
useful tool in searching for New Physics. As an example, a SUSY case is studied, and the signatures due
to the virtual effects induced by a chargino-, charged slepton- or a lightest stop-loop in γγ → ZZ, are
explored. These signatures, combined with the analogous ones in γγ → γγ and γγ → γZ, should help
identifying the nature of possible New Physics particles.

1 Introduction

In the previous papers [1–3] we have presented a thor-
ough study of the processes γγ → γγ and γγ → γZ in the
Standard (SM) and SUSY models. These processes do not
appear at tree level, and first arise at 1-loop order. In the
Standard Model (SM) at energies above 250 GeV , their
most striking property is that they are strongly dominated
by the two independent helicity amplitudes F++++(ŝ, t̂, û)
and F+−+−(ŝ, t̂, û) = F+−−+(ŝ, û, t̂), which moreover turn
out to be largely imaginary; the effect being more pro-
nounced at the smaller scattering angles. At such ener-
gies all the other helicity amplitudes are extremely small.
This remarkable property is due to the fact that the real
Sudakov-type log-squared terms contributed by the var-
ious 1-loop diagrams, cancel out for all physical ampli-
tudes. As a result, the most important remaining contribu-
tion at high energy and fixed scattering angle, is due to the
single-log, predominantly imaginary terms, contributed by
the W -loop diagrams. These terms only affect the helicity
conserving amplitudes. All other amplitudes receive com-
parable contributions from both the W and fermion loops,
and turn out to be very small in SM. Since a similar prop-
erty is naturally expected also for the process γγ → ZZ
at sufficient energies, we intend here to present its study.

The processes (γγ → γγ , γZ , ZZ), could be mea-
sured at the future e+e− Linear Colliders (LC) [4], when
operated as a γγ Collider (LCγγ) through backscattering
of laser beams [5,6]. In such a case the γγ c.m. energy
could be as high as 80% of the initial e+e− c.m. energy,
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while an annual luminosity of L̄γγ ' 0.2L̄ee ' 100fb−1

would be reasonably expected [6]. Polarized γγ beams can
also be obtained using initially polarized electron beams
and lasers.

The aforementioned simplicity of the SM amplitudes
for the three processes (γγ → γγ , γZ , ZZ), may some-
day render them a very useful in the search for New
Physics (NP) [2]; particularly for NP characterized by
appreciable imaginary contributions to the helicity con-
serving amplitudes [2]. Such effects could involve e.g. am-
plitudes containing CP violating phases; or even effects
due to the possible existence of additional large space-
dimensions, inducing contributions from strings of
graviton- or Z- or γ-Kaluza-Klein states with, maybe, ap-
preciable width-generated imaginary parts [7,8].

As an example of such an NP search, we studied pre-
viously the effects induced by the various SUSY particle
loops contributing to γγ → γγ , γZ [1–3]. In these studies
we concentrated on the idea that there is no CP-violating
phase in the SUSY parameter space1; so that energies
above the threshold for the SUSY particle production are
needed, for appreciable imaginary contributions to occur.
Of course, at such energies, the SUSY particles will be also
directly produced and studied with much higher statistics.
Nevertheless, the experimental study of their virtual con-
tribution to the three processes γγ → γγ , γZ , ZZ,
should provide independent information, which will help
to identify their nature. Particularly because such virtual
SUSY effects should in general be less sensitive to the soft

1 An investigation of the effects of such phases we intend to
present in the future.
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symmetry breaking parameters, than the direct produc-
tion ones.

As already indicated, in the present paper we complete
our previous analysis of γγ → γγ , γZ, by also study-
ing the γγ → ZZ amplitudes in the standard and SUSY
models. The distinctive feature of this later process (as
opposed to the previous ones), is that it also receives con-
tributions from the Higgs s-channel pole diagrams2, which
increase the sensitivity to the lightest stop, making it mea-
surable. Of course γγ → ZZ has also been studied before
in SM [9–11], but explicit expressions for the for the W -
loop contribution to the SM amplitudes have only by given
by [9]. We have reproduced the results of these authors3
in Appendix A, choosing a different way of presentation
though.

More explicitly, the expressions for the W [9] and
fermion loop [12] contributions to the helicity amplitudes
are given in Appendix A. In addition, we also give the 1-
loop contribution induced by a single charged scalar parti-
cle. In Appendix B simple asymptotic expressions for the
SM helicity amplitudes are given, which elucidate their
physical properties at high energies.

In Sect. 2 we discuss the main properties of the exact
expressions for the W , fermion or scalar particle 1-loop
contributions. This allows us to study the helicity ampli-
tudes in SM, and to predict possible contributions due
to new fermion or scalar particle loops. As an example
we present the contributions to these amplitudes due to
a gaugino- or higgsino-like chargino, an L- or R-slepton,
or a lightest stop-loop. In all applications we assume no
CP-violating phases in the soft SUSY breaking parame-
ters, and work in the so called decoupling regime, where
the CP-odd neutral Higgs particle is taken very heavy;
m0

A � mZ . Since the asymptotic expressions for the SM
helicity amplitudes, derived in Appendix B, may be useful
for quick calculations; we also offer in Sect. 2 a discussion
of their region of validity.

In Sect. 3, we study the corresponding γγ → ZZ
cross sections for various polarizations of the incoming
photons. We identify the sensitivity of these cross sec-
tions to various SUSY effects and we discuss their ob-
servability. Finally, in Sect. 4, we summarize the results
and give our general conclusions for all three processes
γγ → γγ , γZ , ZZ.

2 An overall view
of the γγ → ZZ amplitudes

The invariant helicity amplitudes Fλ1λ2λ3λ4(βZ , t̂, û) for
the process γγ → ZZ, with λj denoting the helicities
of the incoming and outgoing particles, are given in Ap-
pendix A. As observed in [12,9], the properties of the he-
licity polarization vectors suggest to describe the energy-

2 note that in γγ → γγ , γZ, the Higgs resonance contribu-
tion is only absent at one-loop order, while it contributes from
two loops onwards.

3 Apart from a minor misprint in the small F+−+0 amplitude,
to be mentioned below.

dependence of these amplitudes in terms of the dimen-
sionless variable βZ related to the usual ŝ through ŝ =
4m2

Z/(1−β2
Z). In the ZZ-rest frame, βZ describes the ve-

locity of each Z, provided it is chosen to be positive. Ac-
cording to the discussion in Appendix A, the constraint
(A.9), together with (A.6-A.7) and (A.10), arising from
Bose symmetry and parity invariance respectively, reduce
the number of independent helicity amplitudes to just
eight. As in (A.11) of Appendix A, these are taken to
be

F+++−(βZ , t̂, û) , F++++(βZ , t̂, û),

F+−++(βZ , t̂, û) , F+−00(βZ , t̂, û) ,

F++00(βZ , t̂, û) , F+++0(βZ , t̂, û),

F+−+0(βZ , t̂, û) , F+−+−(βZ , t̂, û) . (1)

As explained in Appendix A, the relations (A.12, A.13)
implied from (A.9), determine through the (βZ → −βZ)
substitution, the two helicity amplitudes

F++−−(βZ , t̂, û) = F++++(−βZ , t̂, û) , (2)

F++−0(βZ , t̂, û) = F+++0(−βZ , t̂, û) , (3)

while all the rest are obtained from the aforementioned
ten, through helicity changes or (t̂ ↔ û) interchanges.

In Appendix A, we reproduce the W and charged
fermion contributions of [9,12] to the eight basic ampli-
tudes in (1); while in (A.32, A.33)) we also give the con-
tributions due to a loop realized by scalar particle carrying
a definite weak isospin and charge. All results are given
in terms of the standard 1-loop functions B0, C0 and D0,
first introduced in [13].

Explicit asymptotic expressions for these functions, as
well as for the corresponding W , fermion and scalar loop
contributions to the helicity amplitudes, are given in Ap-
pendix B. On the basis of them we conclude that in γγ →
ZZ, (as well as in the process γγ → γγ , γZ studied
before), the Sudakov-type real log-squared terms always
cancel out at high energies and fixed scattering angle.
The dominant contributions then arise from logarithmi-
cally increasing imaginary terms generated by theW loop.
It turns out that such terms exist only for the two he-
licity conserving amplitudes F++++(βZ , t̂, û) and F+−+−
(βZ , t̂, û) = F+−−+(βZ , û, t̂); which are therefore the most
important ones at high energies. These dominant ampli-
tudes are largely imaginary and increase with energy, while
all the rest tend asymptotically to quite negligible con-
stants.

These results can be seen in Fig. 1a,b, where the largest
among the ten amplitudes in (1, 2, 3) are shown, us-
ing the exact 1-loop functions, at the c.m. scattering an-
gles ϑ∗ = 300 and ϑ∗ = 900. It is shown in these fig-
ures that indeed at sufficient energies, the real parts of
F±±±±(βZ , t̂, û) and F±∓±∓(βZ , t̂, û) = F±∓∓±(βZ , û, t̂)
are always much smaller than the corresponding imagi-
nary parts. The effect becomes less pronounced though,
as the scattering angle increases.

We have also checked that for
√
ŝ & 300 GeV , the W -

loop contribution completely dominates the large imagi-
nary parts of the helicity conserving amplitudes; while the



G.J. Gounaris et al.: The γγ → ZZ process 81

Fig. 1a,b. SM contribution to the dominant γγ → ZZ helicity amplitudes at ϑ∗ = 300 and ϑ∗ = 900. All other amplitudes are
predicted to be smaller or about equal to F+−+0

fermion and Higgs contributions are very small there. For
the real parts of these amplitudes though, as well for the
other (small) helicity amplitudes, the W contributions are
at the same level as the other ones in SM; their sum being
always very small. Similar results have also been observed
for the γγ → γγ [2] and γγ → γZ [3] cases; but in these
cases the asymptotic region starts already at ∼ 250 GeV .

To assess the quality of the SM asymptotic expressions
given in Appendix B, we have compared them to the exact
1-loop results for the ten γγ → ZZ amplitudes in (1, 2
3). We find that at

√
ŝ ' 1 TeV , the differences between

the imaginary parts of the asymptotic and exact 1-loop
results, are at the 10% level or smaller. At higher ener-
gies the agreement improves of course, reaching the level
of the fourth significant digit at ∼ 10 TeV . For the other
amplitudes though, almost complete cancellations among
the various terms occur, particularly for ŝ & 1 TeV 2; lead-
ing to the conclusion, (common for both the asymptotic
and the exact 1-loop expressions), that they are indeed
negligible.

We next turn to the possible SUSY contributions to
the various amplitudes. As such we study contributions
from a chargino or a sfermion loop, either in diagrams with
four external legs, or in Higgs-pole diagrams involving a
Higgs-γγ vertex.

The chargino contribution

The contribution from the lightest positively charged
chargino χ̃+

1 is obtained from the effective interaction
(A.52) by using [14,15]

gZ
vχ̃1

=
1

2cW sW

{
3
2

− 2s2W +
1
4
[cos(2φL) + cos(2φR)]

}
, (4)

gZ
aχ̃1

=
1

8cW sW
[cos(2φR) − cos(2φL)] , (5)

with

cos(2φL) =

− M2
2 − µ2 − 2m2

W cos(2β)√
(M2

2 + µ2 + 2m2
W )2 − 4[M2µ−m2

W sin(2β)]2
,

cos(2φR) =

− M2
2 − µ2 + 2m2

W cos(2β)√
(M2

2 + µ2 + 2m2
W )2 − 4[M2µ−m2

W sin(2β)]2
, (6)

and

M2
χ̃+

1
=

1
2

{
M2

2 + µ2 + 2m2
W (7)

−
√

(M2
2 + µ2 + 2m2

W )2 − 4[M2µ−m2
W sin(2β)]2

}
,

where M2 and µ are taken real, and β is the usual SUSY
parameter. These formulae should be combined with
(A.53, A.55 -A.71) in Appendix A, in order to calculate
the chargino loop contribution to the four-leg diagrams.

In SUSY, the Higgs-pole contribution, due to the light-
est chargino χ̃+

1 loop affecting the Higgs-γγ vertex, may
in general involve any of the two CP-even neutral Higgs
states h0 or H0. Since we will be working below in the so
called decoupling regime, where mA ∼ mH0 ∼ mH± �
mZ , we only need the h0ZZ and h0χ+

1 χ
−
1 interaction la-

grangian [14]

Lh0ZZ,h0χ+
1 χ−

1
=
gmZ

2cW
sin(β − α)h0ZµZ

µ

− g√
2
[− sinα cosφR sinφL

+ cosα cosφL sinφR]h0 ¯̃χ+
1 χ̃

+
1 . (8)

Comparing this with (A.26) and working in the decoupling
SUSY regime where α = β − π/2, we write the lightest
chargino contribution to the curly brackets in (A.25) as

Hχ̃+
1
(τχ̃+

1
) =

√
2mW

mχ̃1

[cosβ cosφR sinφL
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+ sinβ cosφL sinφR]F1/2(τχ̃+
1
) , (9)

where

τχ̃+
1

≡
4m2

χ̃+
1

ŝ
, (10)

and (A.29, A.31) should be used.
Using the relations (4-10), together with the results

(A.25, A.53, A.55-A.71) of Appendix A, and the exact
calculation of the 1-loop functions provided by [16], we
present in Fig. 2 the results for two almost “extreme” sit-
uations corresponding to a light chargino of mass Mχ̃+

1
'

95 GeV , with tanβ = 2 and µ < 0. In the first case the
chargino nature is taken gaugino-like, by choosing (see
Fig. 2a,b)

M2 = 81 GeV , µ = −215 GeV ,

gZ
vχ̃1

= 1.72 , gZ
aχ̃1

= 0.102 ; (11)

while in the second case it is taken “higgsino-like” by
choosing (see Fig. 2c,d)

M2 = 215 GeV , µ = −81 GeV
gZ

vχ̃1
= 0.76 , gZ

aχ̃1
= 0.113 . (12)

The conclusion from Fig. 2 is that γγ → ZZ is much more
sensitive to a gaugino-like chargino, than to a higgsino-
like. This fact was also observed in the γγ → γZ case;
while γγ → γγ is of course equally sensitive to both.
The Higgs-pole contribution turns out to be quite small in
the chargino case; so that the main effect arises from the
chargino loop in the four-external-leg diagrams. Similar
results, would also be obtained if the gaugino-like state
would correspond to a µ > 0 solution, like e.g. Mχ̃+

1
'

96 GeV , tanβ = 2.5, M2 = 120 GeV and µ = 300 GeV
[17].

The contributions from a slepton or the lightest stop t̃1

As in the chargino case, we consider the decoupling limit
α = β − π/2 for the charged slepton and the lightest stop
contributions. Then, the mass-terms and the h0ẽ∗

L(R)ẽL(R)

and h0t̃∗1 t̃1 interaction Lagrangian are given by [14,18]

Lh0f̃ f̃ = − ( t̃∗L t̃∗R )

(
M2

t̃L
+m2

t mtÃt

mtÃt M2
t̃R

+m2
t

)(
t̃L
t̃R

)

−M2
ẽLẽ

∗
LẽL −M2

ẽRẽ
∗
RẽR

− gm2
Z

mW
cos(2β)h0

[(1
2

− 2
3
s2W

)
t̃∗Lt̃L +

2s2W
3
t̃∗Rt̃R

+
(

− 1
2

+ s2W

)
ẽ∗
LẽL − s2W ẽ∗

RẽR

]

− gmtÃt

2mW
h0(t̃∗Lt̃R + t̃∗Rt̃L)

− gm2
t

mW
h0(t̃∗Lt̃L + t̃∗Rt̃R) , (13)

where
Ãt = At − µ cot(β) , (14)

andMt̃L , Mt̃R,MẽL , MẽR, At are the usual soft breaking
parameters in the stop and slepton sector [14,18]. Equa-
tions (13, 14) determine the sfermion Higgs-pole contri-
butions and possible mixing; while the loop contributions
due to a scalar particle with definite weak isospin and
charge, are given by (A.32-A.41).

We first discuss the charged slepton case for which
there is no appreciable mixing, so that we are lead to a
pure e.g. L- or R-selectron circulating along the loop; com-
pare (13). Taking a common mass Mẽ = MẽL = MẽR =
0.1 TeV , for both (ẽL , ẽR) in (13); we get for a selectron
loop with definite isospin and charge

gZ
ẽ =

1
cW sW

[tẽ3 −Qẽs
2
W ] , (15)

to be used in (A.32 - A.41) in Appendix A, with QẽL
=

QẽR
= −1, tẽL

3 = −1
2 and tẽR

3 = 0; compare (A.33).
For an L-selectron this leads to gZ

ẽL
= −0.65, while

the Higgs-pole contribution is obtained by comparing (13,
A.26) to be

HẽL
(τẽ) =

m2
Z

M2
ẽ

cos(2β)(− 1
2

+ s2W )F0(τẽ) , (16)

where

τẽ =
4M2

ẽ

ŝ
. (17)

Correspondingly, for an R-selectron, we have gZ
ẽR

=
+0.54, while the Higgs-pole contribution is determined by

HẽR
(τẽ) =

m2
Z

M2
ẽ

cos(2β)(−s2W )F0(τẽ) . (18)

Substituting in (A.25, A.32), we find that the R- and L-
selectrons give very similar contributions to the γγ → ZZ
amplitudes; which is confirmed by the results in Fig. 3a-d,
derived using the exact 1-loop functions in (A.34 - A.41).
We recall that the R- and L-selectrons contribute in the
same way also in the γγ → γγ amplitudes, while their con-
tributions to γγ → γZ have opposite signs [1,3]. It seems
that γγ → γγ is somewhat more sensitive to slepton con-
tributions, than the other two processes γγ → γZ , ZZ.
It is also found that the slepton contributions to F++++
and F++00, due to the Higgs-pole or the four-leg loop di-
agrams, are comparable.

We next turn to the contribution from the lightest
stop, denoted as t̃1, which is obtained by taking into ac-
count the mixing implied by (13). For real Mt̃L, Mt̃R and
Ãt, this leads to(

t̃L
t̃R

)
=
(

cos θt − sin θt

sin θt cos θt

)(
t̃1
t̃2

)
(19)

m2
t̃1,t̃2

=
1
2
{
M2

t̃L +M2
t̃R + 2m2

t

∓
√

(M2
t̃L

−M2
t̃R

)2 + 4m2
t Ã

2
t

}
, (20)
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Fig. 2a–d. Chargino contribution to γγ → ZZ helicity amplitudes for the gaugino and higgsino cases at ϑ∗ = 300 and ϑ∗ = 900.
The parameters used are indicated in the figures and Q

χ+
1

= 1

sin(2θt) =
2mtÃt

m2
t̃1

−m2
t̃2

, cos(2θt) =
M2

t̃L
−M2

t̃R

m2
t̃1

−m2
t̃2

. (21)

Then, the Z-stop coupling to be used in conjunction with
(A.32) is

gZ
t̃1

=
1

2cW sW

(
cos2 θt − 4

3
s2W

)
, (22)

while (13, A.26, A.25 ) determine the t̃1 Higgs-pole con-
tribution by

Ht̃1
(τt̃1) =

3
m2

t̃1

{
m2

Z cos(2β)
[cos2 θt

2
− 2s2W

3
cos(2θt)

]

+
mtÃt

2
sin(2θt) +m2

t

}
F0(τt̃1) , (23)

where

τt̃1 =
4m2

t̃1

ŝ
, (24)

and the factor three for colour multiplicity has been in-
cluded.

An example of a lightest stop contribution to the γγ →
ZZ amplitudes is given in Fig. 4, corresponding to the
assumption that Mt̃L = Mt̃R are chosen so that mt̃1

=
100 GeV , and Ãt = 1 TeV . In such a case we get θt =
3π/4. As shown in Fig. 4, the t̃1 contributions to the am-
plitudes, are almost independent of ϑ∗; which simply in-
dicates the dominance of the Higgs-pole contribution.

A comparison of Fig. 2a-d, Fig. 3a-d and Fig. 4a,b indi-
cates that the most promising effects are generated either
by a gaugino-like chargino, or from the lightest stop t̃1.
Most of the t̃1 effect arises from the Higgs-pole contribu-
tion to the amplitudes. This explains why the stop effect
is much smaller in the γγ → γγ, γZ cases [1,3], where this
last contribution is absent.
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Fig. 3a–d. Contribution to γγ → ZZ helicity amplitudes from a ẽ−
L or ẽ−

R loop, at ϑ∗ = 300 and ϑ∗ = 900. The parameters
used are indicated in the figures and the slepton mass is taken Mẽ = 100GeV

Fig. 4a,b. Contribution to γγ → ZZ helicity amplitudes from the lightest stop t̃1 at ϑ∗ = 300 and ϑ∗ = 900. The parameters
used are indicated in the figures
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3 The γγ → ZZ cross sections

We next explore the possibility to use polarized or un-
polarized γγ collisions in an LCγγ Collider [2]. As in the
γγ → γγ case [1], Bose statistics and Parity invariance
leads to

dσ

dτd cosϑ∗ =
dL̄γγ

dτ

{
dσ̄0

d cosϑ∗ + 〈ξ2ξ′
2〉

dσ̄22

d cosϑ∗

+ [〈ξ3〉 cos 2φ+ 〈ξ′
3〉 cos 2φ′]

dσ̄3

d cosϑ∗

+〈ξ3ξ′
3〉
[
dσ̄33

d cosϑ∗ cos 2(φ+ φ′)

+
dσ̄′

33

d cosϑ∗ cos 2(φ− φ′)
]

+ [〈ξ2ξ′
3〉 sin 2φ′

−〈ξ3ξ′
2〉 sin 2φ]

dσ̄23

d cosϑ∗

}
, (25)

where

dσ̄0(γγ → ZZ)
d cosϑ∗

=
(

βZ

128πŝ

)∑
λ3λ4

[|F++λ3λ4 |2 + |F+−λ3λ4 |2] , (26)

dσ̄22(γγ → ZZ)
d cosϑ∗

=
(

βZ

128πŝ

)∑
λ3λ4

[|F++λ3λ4 |2 − |F+−λ3λ4 |2] , (27)

dσ̄3(γγ → ZZ)
d cosϑ∗

=
(−βZ

64πŝ

)∑
λ3λ4

Re[F++λ3λ4F
∗
−+λ3λ4

] , (28)

dσ̄33(γγ → ZZ)
d cosϑ∗

=
(

βZ

128πŝ

)∑
λ3λ4

Re[F+−λ3λ4F
∗
−+λ3λ4

] , (29)

dσ̄′
33(γγ → ZZ)
d cosϑ∗

=
(

βZ

128πŝ

)∑
λ3λ4

Re[F++λ3λ4F
∗
−−λ3λ4

] , (30)

dσ̄23(γγ → ZZ)
d cosϑ∗

=
(
βZ

64πŝ

)∑
λ3λ4

Im[F++λ3λ4F
∗
+−λ3λ4

] , (31)

are expressed in terms of the amplitudes given in Ap-
pendix A. The quantity dL̄γγ/dτ in (25), describes the
photon-photon luminosity per unit e−e+ flux, in an LC
operated in the γγ mode [5]. The Stokes parameters ξ2,
ξ3 and the azimuthal angle φ in (25), determine the nor-
malized most general helicity density matrix of one of the

backscattered photons ρBN
λλ̃

, through the formalism de-
scribed in Appendix B of [1]; compare (B4) of [1]. The cor-
responding parameters for the other backscattered photon
are denoted by a prime. The numerical expectations for
dL̄γγ/dτ , 〈ξj〉, 〈ξ′

j〉 and 〈ξiξ′
j〉 are given in Appendix B

and Fig. 4 of [1].
In (26 - 31), βZ is the Z velocity in the ZZ frame,

while ϑ∗ is the scattering angle, and τ ≡ sγγ/see. Because
of Bose statistics, all dσ̄j/d cosϑ∗ are forward-backward
symmetric. Note that dσ̄0/d cosϑ∗ is the unpolarized cross
section. This is the only σ̄j quantity which is positive def-
inite.

The results for the differential cross sections
dσ̄j/d cosϑ∗, are given in Fig. 5a-f at

√
ŝ = 0.5 TeV ;

while the corresponding integrated cross sections in the
range 300 ≤ ϑ∗ ≤ 1500, appear as functions of

√
ŝ, in

Fig. 6a-f. In each case we give the standard model (SM)
predictions; as well as the results expected for the cases
of including the contributions from a single chargino or a
single charged slepton or the t̃1. For each of these SUSY
contributions, we use the same parameters as those ap-
pearing in the amplitudes presented in Fig. 2-4.

When comparing the general structure of the differ-
ential cross sections in Fig. 5a-f, with the corresponding
results for γγ → γγ and γZ [1,3], we remark the following.
The general shape of dσ̄0/d cosϑ∗ is roughly the same in
all three cases. Exactly the opposite shape, with central
a peak (at ϑ∗ ' π/2) and a dip in the forward and back-
ward regions, is found for dσ̄22/d cosϑ∗ in the γγ → γγ
case; while for γγ → γZ we find something like a plateau
in the central region; which develops to a central dip and
two peaks at ϑ∗ ' π/4 , 3π/4 for γγ → ZZ; compare
Fig. 6b of [3] and Fig. 5b of this paper.

The other cross sections are much smaller. Paying at-
tention only to the largest ones, we remark that
dσ̄33/d cosϑ∗ has a central-peak and a forward-backward
dip structure for all processes; compare Fig. 6e in [1] with
Fig. 5e here. On the other hand, dσ̄3/d cosϑ∗ has a cen-
tral plateau and forward and backward dips in γγ → ZZ;
which become a central plateau accompanied with forward
and backward peaks in γγ → γγ; while in γγ → γZ it is
not forward-backward symmetric; compare Fig. 6d of [3]
and Fig. 5c.

Concerning the relative (NP versus SM) effects, the
main difference between γγ → ZZ, and (γγ → γγ , γZ),
is that the former displays considerable sensitivity to the
lightest stop t̃1, which is not shared by the other two. This
is because the lightest stop contribution is mainly gener-
ated by the Higgs-pole diagrams; which of course do not
contribute to γγ → γγ , γZ. Such t̃1 effects are mostly vis-
ible in dσ̄22/d cosϑ∗ and dσ̄3/d cosϑ∗ shown in Fig. 5b,c,
and in σ̄22 in Fig. 6c.

With respect to the chargino signatures, the fact is that
γγ → ZZ and γγ → γZ are mainly sensitive to a gaugino-
type chargino; while γγ → γγ is equally sensitive to both,
the gaugino- as well as the higgsino-type charginos. Fi-
nally, very little sensitivity to charged sleptons is displayed
by all three processes γγ → γγ , γZ , ZZ.
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Fig. 5a–d. Angular distributions for dσ̄0/d cos ϑ∗, dσ̄22/d cos ϑ∗, dσ̄3/d cos ϑ∗, dσ̄23/d cos ϑ∗

Fig. 5e,f. Angular distributions for dσ̄33/d cos ϑ∗, dσ̄′
33/d cos ϑ∗
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Fig. 6a–d. σ̄0, σ̄22, σ̄3 and σ̄23 for SM (solid) and in the presence of a chargino, or a selectron, or a lightest stop contribution,
using the same parameters as in Fig. 2 or Fig. 3 or Fig. 4 respectively

Fig. 6e,f. σ̄33 and σ̄′
33 for SM (solid) and in the presence of a chargino or a selectron or a lightest stop contribution using the

same parameters as in Fig. 2 or Fig. 3 or Fig. 4 respectively
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To make the discussion of the observability of the var-
ious NP effects in the differential cross sections in (25)
more quantitative, we should take into account the exper-
imental aspects of the γγ collision realized through laser
backscattering [5,6]. We proceed along the same lines as
for the analysis of the observable quantities for γγ → γZ
in Sect. 3 of [3]. The differential cross sections for γγ →
ZZ in Fig. 5a-f, are in almost all cases4 about a factor of 2
larger than the corresponding cross sections for γγ → γZ
shown in Fig. 6a-f of [3]. Of course, for estimating the
number of the measurable ZZ-production events, some
ZZ identification factor should be taken into account. A
corresponding factor is apparently not needed in the γZ
production case, since the photon provides a very good
signature. Assuming that the useful modes for the ZZ
identification are those where one Z decays leptonically
(including the invisible neutrino mode), and the other
hadronically, we get an identification factor of about 1/2;
if only charged leptons are used for the leptonic modes
this factor decreases to 20 percent. So finally, the useful
ZZ rate is comparable to the γZ one. Thus, the statisti-
cal uncertainties in measuring the various ZZ cross sec-
tions are similar to those of the corresponding γZ ones
appearing in [3]. Therefore, we expect that it should be
possible to attain an absolute accuracy of about 0.3fb for
dσ̄0(γγ → ZZ)/d cosϑ∗ at large angles. Correspondingly,
an absolute accuracy of about (0.3 − 3)fb, (depending on
the flux optimization), should be realistic for the smaller
quantities dσ̄22/d cosϑ∗, dσ̄3/d cosϑ∗ and dσ̄33/d cosϑ∗ at
large angles.

Therefore, the γγ → ZZ sensitivity to a gaugino-type
chargino of ∼ 100 GeV , is similar and even more pro-
nounced then the sensitivity of the γγ → γZ process;
while the higgsino or slepton effects are more depressed
in γγ → ZZ [3]. The important feature of the ZZ pro-
duction is its sensitivity to a t̃1 contribution, which may
be comparable to the gaugino or higgsino sensitivity, pro-
vided that sufficient transverse and longitudinal polariza-
tions for the photon beams are available. We also note
that in the present case we have explored this sensitivity
only in the decoupling limit.

The illustrations given in the present paper are for a
chargino, slepton, or a lightest stop t̃1 in 100 GeV mass
range. For higher masses, the relative merits of the γγ →
ZZ, γγ → γZ and γγ → γγ processes5 remain about the
same. These processes should be very helpful in identifying
the nature of the various sparticles, up to masses of about
300 GeV.

4 Conclusions

In this paper we have studied the helicity amplitudes and
observables for the process γγ → ZZ. Combining this
with previous work in [1,3,19–21,9], we get the complete

4 The exception applies only to the case of dσ̄23/d cos ϑ∗,
which is very small in SM, anyway.

5 In [1] we gave some illustration for sparticles at 250 GeV
in the γγ → γγ case.

set of all relevant formulae for calculating the helicity am-
plitudes of the three processes γγ → γγ , γZ , ZZ in SM
and SUSY.

The striking property of these three processes in SM
above ∼ 300GeV , is that they are strongly dominated by
just the two helicity-conserving amplitudes F±±±±(ŝ, t̂, û)
and F±∓±∓(ŝ, t̂, û) = F±∓∓±(ŝ, û, t̂); which moreover are
largely imaginary. This simple structure is solely gener-
ated by the W -loop, which at these energies, has exactly
the same structure as the one expected from a Pomeron
contribution. But the magnitude of this “weakly interact-
ing” W -loop contribution is much larger than any reason-
able expectation we might have for the “strongly interact-
ing” Pomeron. If the LCγγ Collider is ever realized, it will
be amusing to check this!

Furthermore, the aforementioned simple properties of
the SM amplitudes of the above processes, should make
them a very efficient tool in searching for New Physics
(NP) involving substantial imaginary amplitudes. As a
first example here and in [1,3] we studied the contribu-
tions from loops involving charginos or sleptons or the
stop squark, in SUSY models with no CP violating phases
beyond the SM ones. Thus, these first examples have been
only applied to energies above the threshold for sparticle
production.

Such measurements should be particularly useful when
we would confront the question of identifying the nature
of any possible SUSY candidate. If such a stage is ever
reached, then these loop effects, being less (or at least
differently depending) on the soft SUSY breaking param-
eters, would supply important information on the nature
of such candidates. Particularly clear is the distinction
between a gaugino-type chargino which should give an
observable effect to all the three processes above; as op-
posed to t̃1 contribution which should only be visible at
γγ → ZZ; provided of course that these SUSY particles
are not too heavy. Similarly, a higgsino type chargino with
mass arround 100 GeV, will only be visible at γγ → γγ
[1].

The standard SUSY scenarios we have explored in the
present and previous papers [2,1,3], certainly do not ex-
haust the possibilities to use γγ → γγ , γZ , ZZ, in order
to probe new physics. They should certainly exist many
more, particularly related to complex phases, that the NP
amplitudes might for some reason have [2]. Within the
SUSY framework, the next thing of this type that comes
to mind, is to explore the sensitivity to the CP violating
phases affecting the soft SUSY breaking parameters. This
should affect both chargino and stop contributions. Fur-
thermore, in explorations of the SUSY parameter space
away from the decoupling limit, contributions from the
heavier CP-even H0-pole may also affect γγ → ZZ, pro-
viding useful information.

The overwhelming dominance of the imaginary parts of
the two helicitity conserving amplitudes in γγ → γγ , γZ ,
ZZ at high energies in SM, is simply so strikingly ex-
clusive, that it cannot stand without some useful con-
sequences. This constitutes a strong motivation for the
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achievement of high energy polarized photon-photon col-
lisions.

Appendix A: The γγ → ZZ helicity
amplitudes in the Standard and SUSY models

The invariant helicity amplitudes for the process

γ(p1, λ1)γ(p2, λ2) → Z(p3, λ3)Z(p4, λ4) , (A.1)

are denoted as6 Fλ1λ2λ3λ4(βZ , t̂, û), where the momenta
and helicities of the incoming photons and outgoing Z’s
are indicated in parentheses, and the definitions

ŝ = (p1+p2)2 =
4m2

Z

1 − β2
Z

, t̂ = (p1−p3)2 , û = (p1−p4)2,

(A.2)
ŝ4 = ŝ−4m2

Z , ŝ2 = ŝ−2m2
Z , t̂1 = t̂−m2

Z , û1 = û−m2
Z

(A.3)
are used. The parameter βZ in (A.2) coincides with the
Z-velocity in the ZZ c.m. frame, and it is convenient to
be used instead of ŝ. Denoting by ϑ∗ the c.m. scattering
angle of γγ → ZZ, we also note

t̂ = m2
Z − ŝ

2
(1 − βZ cosϑ∗),

û = m2
Z − ŝ

2
(1 + βZ cosϑ∗), (A.4)

Y = t̂û−m4
Z =

s2β2
Z

4
sin2 ϑ∗ = ŝp2

TZ ,

∆ =

√
ŝm2

Z

2Y
, (A.5)

where pTZ is the Z transverse momentum.
Bose statistics, combined with the Jacob-Wick (JW)

phase conventions7 for the helicity wavefunction of the so
called second particle, demands

Fλ1λ2λ3λ4(βZ , t̂, û) = Fλ2λ1λ4λ3(βZ , t̂, û)(−1)λ3−λ4 , (A.6)

Fλ1λ2λ3λ4(βZ , t̂, û) = Fλ2λ1λ3λ4(βZ , û, t̂)(−1)λ3−λ4 , (A.7)

Fλ1λ2λ3λ4(βZ , t̂, û) = Fλ1λ2λ4λ3(βZ , û, t̂); (A.8)

while the standard form of the Z polarization vectors im-
plies the constraint

Fλ1λ2λ3λ4(βZ , t̂, û) = Fλ1λ2,−λ3,−λ4(−βZ , t̂, û)(−1)λ3−λ4 .
(A.9)

Finally, parity invariance implies

Fλ1λ2λ3λ4(βZ , t̂, û) = F−λ1,−λ2,−λ3,−λ4(βZ , t̂, û)(−1)λ3−λ4 .
(A.10)

6 Their sign is related to the sign of the S-matrix through
Sλ1λ2λ3λ4 = 1 + i(2π)4δ(pf − pi)Fλ1λ2λ3λ4 .

7 This convention is not used in [9,12].

As a result, the 36 helicity amplitudes may be ex-
pressed in terms of just the eight independent ones

F+++−(βZ , t̂, û) , F++++(βZ , t̂, û),

F+−++(βZ , t̂, û) , F+−00(βZ , t̂, û),

F++00(βZ , t̂, û) , F+++0(βZ , t̂, û),

F+−+0(βZ , t̂, û) , F+−+−(βZ , t̂, û). (A.11)

Using these and (A.9), we determine

F++−−(βZ , t̂, û) = F++++(−βZ , t̂, û) , (A.12)

F++−0(βZ , t̂, û) = F+++0(−βZ , t̂, û) , (A.13)

while the remaining 26 amplitudes may be obtained from
the ten in (A.11, A.12, A.13), by (t̂ ↔ û) interchanges or
helicity changes; compare (A.6-A.8, A.10).

In SM or any SUSY model, there are two types of con-
tributions to these amplitudes. The first type consists of
the one-loop diagrams involving four external legs, like
those contributing to the γγ → γγ and γγ → γZ pro-
cesses [3,19,1,2]; while the second type includes the Higgs
s-channel pole contributions, arising from loops with three
external legs generating8 h0γγ interactions [9]. To express
them economically, we use the notation of [22] for the
B0, C0 and D0 1-loop functions first defined by Passarino
and Veltman [13]. For brevity, we introduce the shorthand
writing9

B0(ŝ) ≡ B0(ŝ;m,m) , (A.14)
C0(ŝ) ≡ C0(12) = C0(0, 0, ŝ;m,m,m) , (A.15)

BZ(ŝ) ≡ B0(ŝ) −B0(m2
Z + iε) , (A.16)

CZ(t̂) ≡ C0(13)

≡ C0(24) ≡ C0(0,m2
Z , t̂;m,m,m) , (A.17)

CZZ(ŝ) ≡ C0(34) ≡ C0(m2
Z ,m

2
Z , ŝ;m,m,m) , (A.18)

DZZ(ŝ, û) ≡ D0(123)
≡ D0(0, 0,m2

Z ,m
2
Z , ŝ, û;m,m,m,m) =

DZZ(û, ŝ) ≡ D0(321)
≡ D0(m2

Z , 0, 0,m
2
Z , û, ŝ;m,m,m,m) , (A.19)

DZZ(ŝ, t̂) ≡ D0(213)

≡ D0(0, 0,m2
Z ,m

2
Z , ŝ, t̂;m,m,m,m) =

DZZ(t̂, ŝ) ≡ D0(312)

≡ D0(m2
Z , 0, 0,m

2
Z , t̂, ŝ;m,m,m,m) , (A.20)

DZZ(t̂, û) ≡ D0(132)

≡ D0(0,m2
Z , 0,m

2
Z , t̂, û;m,m,m,m) =

DZZ(û, t̂) ≡ D0(231)

≡ D0(0,m2
Z , 0,m

2
Z , û, t̂;m,m,m,m) (A.21)

8 Here h0 denotes any neutral Higgs boson.
9 The numbers used in the notation of the one loop functions,

correspond to the momenta of process (A.1), (taken here as
incoming).
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In diagrams with four external legs, the expressions

F̃ (ŝ, t̂, û) ≡ DZZ(ŝ, t̂) +DZZ(ŝ, û)

+DZZ(t̂, û) , (A.22)

E1(ŝ, t̂) ≡ 2t̂1CZ(t̂) − ŝt̂DZZ(ŝ, t̂), (A.23)

E2(t̂, û) ≡ 2t̂1CZ(t̂) + 2û1CZ(û)

−Y DZZ(t̂, û), (A.24)

often appear in the amplitudes below.
The neutral Higgs-pole contribution to the γγ → ZZ

helicity amplitudes, involve the h0γγ interaction gener-
ated by spin-1, spin-1/2 or spin-0 loops. They are concisely
described as [18]

Fh
λ1λ2λ3λ4

(γγ → ZZ) = − α2

2s2W c2W

{∑
i

Hi(τ)

}

× ŝ

ŝ−m2
h + imhΓh

· (1 + λ1λ2)
2

(A.25)

×
[
(1 + λ3λ4)

λ3λ4

2
− 1 + β2

Z

1 − β2
Z

(1 − λ2
3)(1 − λ2

4)
]
,

where the index i runs over the particles in the loop de-
scribing the h0γγ vertex, whose spin is (1, 1/2 or 0). In
(A.25) the h0ZZ coupling is taken as in SM; which means
e.g. that an extra factor sin(β − α) should be introduced
in the case of the lightest CP even SUSY Higgs particle.
If the interaction Lagrangian of the neutral Higgs to a
charged particle pair with spin (1, 1/2, 0) is given by [18]

Lint = − gmf

2mW
ψ̄ψh0 + gmWW+

µ W
µ−h0

−gm
2
H±

mW
H+H−h0 , (A.26)

then
Hi(τ) = NciQ

2
iFi(τ) , (A.27)

with

F1(τ) =
2m2

h

ŝ
+ 3τ + 3τ

(
8
3

− 2m2
h

3ŝ
− τ

)
f(τ), (A.28)

F1/2(τ) = −2τ [1 + (1 − τ)f(τ)], (A.29)
F0(τ) = τ [1 − τf(τ)], (A.30)

where (compare (A.15))

τ =
4m2

i

ŝ
, f(τ) = − ŝ

2
C0(ŝ) . (A.31)

In (A.27), Qi is the charge and Nci the colour multiplic-
ity of the particle contributing to h0γγ. If more than one
neutral Higgs particle with couplings of the type given in
(A.26) exists, then a summation over their contributions
should be included in (A.25).

We next turn to the contribution from loops in dia-
grams involving four external legs. It is easiest to describe
them by using a non-linear gauge as in [11], for which the

same type of particle propagates along the entire loop10.
Thus, the various contributions may simply be described
as arising from loops due to a scalar particle, a W boson
or a fermion. We give them in this order below.

The scalar particle loop contribution to the helicity
amplitudes. We consider the loop contribution due to a
scalar particle of mass m, charge QS and a definite value
of third isospin component tS3 . In analogy to (A.36) of [3],
this contribution is written as

FS
λ1λ2λ3λ4

(βZ , t̂, û) ≡ α2Q2
S

(
gZ

S

)2
AS

λ1λ2λ3λ4
(βZ , t̂, û;m) ,

(A.32)
where

gZ
S =

tS3 −QSs
2
W

sW cW
. (A.33)

Relations (A.32 , A.33) are directly applicable to a purely
L- or R-slepton or squark, while the appropriate mixing
should be taken into account in a case like a stop contri-
bution. The scalar contributions to the r.h.s. of (A.32) for
the eight basic amplitudes in (A.11), are:

AS
+++−(βZ , t̂, û;m) =

− 4ŝ2Y
t̂1û1ŝ4

+
4ŝ2m2(ŝŝ4 − 2Y )

ŝ4Y
C0(ŝ) +

4ŝŝ4m2

Y
CZZ(ŝ)

+ 8m4F̃ (ŝ, t̂, û) +
4[m2

ZY −m2ŝŝ4]
ŝ2ŝ4

E2(t̂, û)

−8m2
Zm

2Y

ŝŝ4
DZZ(t̂, û)

− 4

{
m2t̂

Y
E1(ŝ, t̂) + 2m2

(
1 +

m2
Z ŝ2

ŝ4t̂1

)
CZ(t̂)

+
m2

ZY

ŝ4t̂21

(
2t̂
ŝ

− 1
)
BZ(t̂)

+
2m4

Zm
2

ŝ4
DZZ(ŝ, t̂) + (t̂ ↔ û)

}
, (A.34)

AS
++++(βZ , t̂, û;m) =

4[m2
Z(2Y − ŝŝ4) + βZ ŝY ]

ŝ4t̂1û1

+
16m2

Zm
2

ŝ4
C0(ŝ) + 8m4F̃ (ŝ, t̂, û)

+
8Y m2

ŝŝ4
(ŝ2 + βZ ŝ)DZZ(t̂, û)

−2[(ŝ2 + βZ ŝ)Y − 4ŝm2
Zm

2]
ŝ2ŝ4

E2(t̂, û)

+4

{
2m2m4

Z

ŝ4
DZZ(ŝ, t̂)

−[ŝ2 + βZ ŝ][2m2
ZY + t̂1(2t̂1 + ŝ)(t̂+m2

Z)]
2ŝ4ŝt̂21

BZ(t̂)

− 2m2[t̂1(t̂− û) + Y ](ŝ2 + βZ ŝ)
ŝ4t̂1ŝ

CZ(t̂)

10 For this gauge, the couplings γW ±φ∓, ZW ±φ∓ vanish.
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+(t̂ ↔ û)

}
, (A.35)

AS
+−++(βZ , t̂, û;m) = − 4ŝ2Y

ŝ4t̂1û1

+
4(ŝ4m2 +m4

Z)
ŝ4Y

[ŝŝ2C0(ŝ) + (ŝŝ4 − 2Y )CZZ(ŝ)]

− 4m2ŝ2
ŝŝ4

E2(t̂, û) + 8m4F̃ (ŝ, t̂, û)

+4

{
m2

Z(Y + 2t̂m2
Z)

ŝ4t̂21
BZ(t̂) − 2m2ŝ2t̂

ŝ4t̂1
CZ(t̂)

+
2m2m4

Z

ŝ4
DZZ(ŝ, t̂) − t̂(ŝ4m2 +m4

Z)
ŝ4Y

E1(ŝ, t̂)

+(t̂ ↔ û)

}
, (A.36)

AS
+−00(βZ , t̂, û;m) = − 16m2

ZY

ŝ4t̂1û1
+

2ŝ2ŝ2m2
Z

ŝ4Y
C0(ŝ)

+
2ŝm2

Z

ŝ4Y
(ŝŝ4 − 2Y )CZZ(ŝ) − 4(t̂− û)2m2

Zm
2

ŝŝ4
DZZ(t̂, û)

−4

{
2m2

Z

ŝ4t̂21
(t̂2 +m4

Z)BZ(t̂) − 8m2m2
ZY

ŝ4ŝt̂1
CZ(t̂)

− ŝm2
Zm

2

ŝ4
DZZ(ŝ, t̂) +

ŝt̂m2
Z

2ŝ4Y
E1(ŝ, t̂)

+(t̂ ↔ û)

}
, (A.37)

AS
++00(βZ , t̂, û;m) = − 4m2

Zm
2(t̂− û)2

ŝŝ4
DZZ(t̂, û)

+
16m2

ZY

ŝ4t̂1û1
+

32m2
Zm

2

ŝ4
C0(ŝ) +

2m2
Z(t̂− û)2

ŝ2ŝ4
E2(t̂, û)

−4

{
2m2

Z

ŝ4ŝt̂21
[2m2

ZY + t̂1(t̂− û)(t̂+m2
Z)]BZ(t̂)

− 8m4
Zm

2

ŝ4t̂1
CZ(t̂) − ŝm2

Zm
2

ŝ4
DZZ(ŝ, t̂)

+(t̂ ↔ û)

}
, (A.38)

AS
+++0(βZ , t̂, û;m)/∆ = −4

(t̂− û)
ŝ4

{
(1 + βZ)Y

t̂1û1

+2m2C0(ŝ) − 1
ŝ

[
Y (1 + βZ)

2ŝ
+ βZm

2
]
E2(t̂, û)

+
(1 + βZ)m2Y

ŝ
DZZ(t̂, û)

}

+
4
ŝ4

{
(1 + βZ)Y

ŝt21
(ŝm2

Z − 2t̂t̂1)BZ(t̂)

+
2m2(1 + βZ)(t̂2 −m4

Z + Y )
t̂1

CZ(t̂)

+m2(Y + t̂2 −m4
Z)DZZ(ŝ, t̂) − (t̂ ↔ û)

}
, (A.39)

AS
+−+0(βZ , t̂, û;m)/∆ = − 4(û− t̂− ŝβZ)Y

ŝ4t̂1û1

+
4(û− t̂+ ŝβZ)

ŝ4
BZ(ŝ)

+
2ŝ
ŝ4Y

{
(t̂− û)(2m4

Z − ŝ22)

+βZ

[
4m2Y + ŝ(t̂2 + û2)

] }
C0(ŝ)

+
2ŝŝ2
ŝ4Y

{
(û− t̂)ŝ4 + βZ(ŝŝ4 − 2Y )

}
CZZ(ŝ)

+
4m2(t̂− û)

ŝŝ4
E2(t̂, û)

−4

{
m2

ZY − t̂t̂1(t̂+m2
Z) + βZ(m2

ZY − t̂t̂21)
ŝ4t̂21

BZ(t̂)

− [(2m4
Z + t̂ŝ2)(2m2Y + ŝt̂2) + βz ŝt̂(4m2Y + ŝt̂2)]

2ŝ4Y ŝt̂

×E1(ŝ, t̂) +
2m2[(2m2

Z t̂1 + ŝt̂)Y − βZ ŝ
2t̂2]

ŝŝ4t̂t̂1
CZ(t̂)

−(t̂ ↔ û , βZ → −βZ)

}
, (A.40)

AS
+−+−(βZ , t̂, û;m) =

4[ŝ2Y + βZm
2
Z ŝ(û− t̂)]

ŝ4t̂1û1

− 4ŝ2[Y − ŝ{ŝ4 + βZ(û− t̂)}]
ŝ4Y

BZ(ŝ)

+
4ŝŝ2
ŝ4Y

{[
m2 +

ŝ(ŝŝ4 − Y +m4
Z)

2Y

]

×[ŝ4 + βZ(û− t̂)] − ŝŝ4 −m4
Z

}
C0(ŝ) +

4ŝ
Y

{[
m2

+
t̂2(t̂2 −m4

Z + Y ) + û2(û2 −m4
Z + Y ) + 2Y (ŝ22 −m4

Z)
2Y ŝ4

]

×[ŝ4 + βZ(û− t̂)] +m4
Z − ŝ22

}
CZZ(ŝ)

+8m2
(
m2 − m2

ZY

ŝŝ4

)
DZZ(t̂, û)

+4

{
− t̂

2ŝ4Y 2[2m
2ŝ4Y + ŝŝ4t̂

2 − 2m4
ZY

−βZ ŝt̂(t̂2 −m4
Z + Y )]E1(ŝ, t̂)
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+
m2

ŝ4Y
[2m2ŝ4Y + ŝŝ4t̂

2 − 2m4
ZY

−2βZ ŝt̂(t̂2 −m4
Z + Y )]DZZ(ŝ, t̂)

+
2m2

ŝ4t̂1

[
m2

Z(ŝ4 + βZ ŝ) − 2m2
ZY

ŝ
− βZ ŝt̂(t̂2 −m4

Z)
Y

]
CZ(t̂)

+
[(m4

Z(t̂− û)
ŝ4t̂21

− 1
2

)
(1 + βZ) +

m2
Z

ŝ4

(
1 − 2m4

Z

t̂21

)
+

2t̂βZ

ŝ4

− t̂2

Y ŝ4

(
ŝ4 − βZ(t̂− û)

)]
BZ(t̂)

+(t̂ ↔ û , βZ → −βZ)

}
. (A.41)

The W loop contribution to the helicity amplitudes are
generated in the non-linear gauge [11], by loops involving
W , Goldstone bosons and FP ghosts, in diagrams involv-
ing four external legs. They have first been presented in
[9], and have also been calculated in [10]. Here we give a
new expression, using the results in (A.34-A.41). The W -
loop contribution to the γγ → ZZ helicity amplitudes is
thus written as

FW
λ1λ2λ3λ4

(βZ , t̂, û) ≡ α2

s2W
AW

λ1λ2λ3λ4
(βZ , t̂, û) (A.42)

with

AW
λ1λ2λ3λ4

(βZ , t̂, û) =
(12c4W − 4c2W + 1)

4c2W
×AS

λ1λ2λ3λ4
(βZ , t̂, û;mW )

+δW
λ1λ2λ3λ4

(βZ , t̂, û) , (A.43)

and
δW
+++−(βZ , t̂, û) = 0 , (A.44)

δW
++++(βZ , t̂, û) =

8m2
Z ŝβZ

ŝ4
C0(ŝ)

+
4[2c2W ŝ4(ŝ2 + βZ ŝ) +m2

Z(ŝ4 + βz ŝ)]
ŝŝ4

E2(t̂, û)

−4c2W [2m4
Z + (4m2

W − ŝ)(ŝ2 + βZ ŝ)]F̃ (ŝ, t̂, û)

+
2ŝm2

Z

ŝ4
(ŝ4 + βZ ŝ2)[DZZ(ŝ, t̂) +DZZ(ŝ, û)] ,(A.45)

δW
+−++(βZ , t̂, û) =

4ŝ
ŝ4Y

[ŝ2ŝ4(4m2
W −m2

Z)

−8Y m2
W ]C0(ŝ) +

4(4m2
W −m2

Z)(ŝŝ4 − 2Y )
Y

CZZ(ŝ)

+8m2
W

[
4m2

W −m2
Z +

2Y
ŝ4

]
F̃ (ŝ, t̂, û)

+

{
4[4m2

W (t̂+m2
Z)2 + t̂ŝ4m

2
Z ]

ŝ4Y
E1(ŝ, t̂)

+
4m2

ZY

ŝ4
DZZ(ŝ, t̂) + (t̂ ↔ û)

}
, (A.46)

δW
+−00(βZ , t̂, û) =

2ŝ
ŝ4Y

[8m2
W (ŝ2ŝ4 − 4Y )

+ŝ4(ŝ22 − 2Y )]C0(ŝ)

+
2
Y

(ŝ2 + 8m2
W )(ŝŝ4 − 2Y )CZZ(ŝ)

+4m2
W (ŝ2 + 8m2

W )F̃ (ŝ, t̂, û) − 2
ŝ4

(ŝ4 + 16m2
W )E2(t̂, û)

+

{
4t̂1
ŝ4Y

[
8m2

W

(
Y + (t̂+m2

Z)2
)

− ŝ2ŝ4t̂
]
CZ(t̂)

+
2
ŝ4Y

[
8m2

W (t̂2ŝŝ4 − 2Y t̂21)

+ŝ
(
(t̂2 −m4

Z)2 − 2m2
Z t̂

2ŝ4 − ŝt̂Y
)]
DZZ(ŝ, t̂)

+(t̂ ↔ û)

}
, (A.47)

δW
++00(βZ , t̂, û) = 4ŝC0(ŝ)

−4m2
W (ŝ+ 2m2

Z − 8m2
W )F̃ (ŝ, t̂, û)

−4(4m2
W −m2

Z)
ŝ

E2(t̂, û) , (A.48)

δW
+++0(βZ , t̂, û)/∆ =

− (t̂− û)(ŝ4 + βZ ŝ)
ŝŝ4

[
2ŝC0(ŝ) + E2(t̂, û)

]

+
(ŝ4 + βZ ŝ)

ŝ4

{
(t̂2 −m4

Z + Y )DZZ(ŝ, t̂)

−(t̂ ↔ û)

}
, (A.49)

δW
+−+0(βZ , t̂, û)/∆ =

− 2
ŝ4

[
(û− t̂− βZ ŝ)ŝ4 + 8c2W ŝ(û− t̂+ βZ ŝ4)

]
C0(ŝ)

+16c2W (t̂− û− βZ ŝ)CZZ(ŝ) − 64c2Wm2
WβZY

ŝ4
F̃ (ŝ, t̂, û)

+
8c2W
ŝ4

Y (û− t̂− βZ ŝ)DZZ(t̂, û)

+
(t̂− û+ βZ ŝ)

ŝ
E2(t̂, û)

−
{

(û− t̂− βZ ŝ)
ŝ4

[
2m4

Z + 2t̂2 + ŝt̂− 8c2WY
]
DZZ(ŝ, t̂)

− 16c2W
ŝ4

(t̂+m2
Z)(1 + βZ)E1(ŝ, t̂)

−(t̂ ↔ û , βZ → −βZ)

}
, (A.50)

δW
+−+−(βZ , t̂, û) = 16c2W ŝ

[ŝ2
ŝ4
C0(ŝ) + CZZ(ŝ)

]
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+
4c2W
ŝ4

[
ŝ(ŝ2 + 4m2

W )(ŝ4 + βZ [t̂− û]) − 2Y ŝ2
]
F̃ (ŝ, t̂, û)

+

{
8c2W (ŝ2 + βZ ŝ)

ŝ4
E1(ŝ, t̂)

+
2m2

Z

ŝ4

[
ŝ(ŝ4 + βZ [t̂− û]) − 2Y

]
DZZ(ŝ, t̂)

+(t̂ ↔ û , βZ → −βZ)

}
, (A.51)

We have checked that the above W loop contributions
to the helicity amplitudes agree with those of [9], except
for a minor misprint in the AW

+−+0 case11. It should be
noticed also that our definitions of t̂ and û should be inter-
changed when comparing with [9], and that these authors
do not use the JW convention.

The fermion loop contribution. If the effective Zff̄
interaction is written as

LZff = −eZµf̄(γµg
Z
V f − γµγ5g

Z
Af )f, (A.52)

then the fermion loop contribution (for a fermion of mass
mf ), to the γγ → ZZ helicity amplitude, is given by12

[12]

F f
λ1λ2λ3λ4

(βZ , t̂, û)

≡ α2Q2
f

{
(gZ

vf )2Avf
λ1λ2λ3λ4

(βZ , t̂, û;mf )

+(gZ
af )2Aaf

λ1λ2λ3λ4
(βZ , t̂, û;mf )

}
. (A.53)

In SM, the vector and axial vector couplings for the quarks
and leptons are given by (A.52),

gZ
vf =

tf3 − 2Qfs
2
W

2sW cW
, gZ

af =
tf3

2sW cW
, (A.54)

where tf3 is the third isospin component of the fermion,
and Qf is its charge.

The vector and axial contributions to the fermion loop
amplitudes in (A.53), may be expressed in terms of the
AS amplitudes of (A.34-A.41), by

Avf
λ1λ2λ3λ4

(βZ , t̂, û;mf ) = −2AS
λ1λ2λ3λ4

(βZ , t̂, û;mf )

+δvf
λ1λ2λ3λ4

(βZ , t̂, û;mf ),(A.55)

Aaf
λ1λ2λ3λ4

(βZ , t̂, û;mf ) = −2AS
λ1λ2λ3λ4

(βZ , t̂, û;mf )

+δaf
λ1λ2λ3λ4

(βZ , t̂, û;mf ),(A.56)

where

δvf
+++−(βZ , t̂, û;mf ) = δaf

+++−(βZ , t̂, û;mf ) = 0 , (A.57)

11 We find that the term −24c2
W m2

W u1 in the coefficient of
C(t) in (3.14) of [9], should be replaced by −24c2

W m2
W u1/(ss4).

12 As far as the sign of these amplitudes, we agree with [9],
apart from the trivial changes introduced by our using of the
JW phase conventions.

δvf
++++(βZ , t̂, û;mf ) = 4(ŝ2 + ŝβZ) (A.58)

×
[
m2

f F̃ (ŝ, t̂, û) − 1
2ŝ
E2(t̂, û)

]
,

δaf
++++(βZ , t̂, û;mf ) = − 8ŝm2

f

ŝ4

[
4βZC0(ŝ) + (ŝ4 + βZ ŝ2)

×[DZZ(ŝ, t̂) +DZZ(ŝ, û)]
]

+4m2
f (ŝ2 + ŝβZ + 8m2

f )F̃ (ŝ, t̂, û)

−2
ŝ

[
ŝ2 + ŝβZ +

8m2
f (ŝ4 + ŝβZ)

ŝ4

]
E2(t̂, û) , (A.59)

δvf
+−++(βZ , t̂, û;mf ) = − 4m2

Z

Y

[ŝ(ŝ2ŝ4 − 2Y )
ŝ4

C0(ŝ)

+(ŝŝ4 − 2Y )CZZ(ŝ)
]

− 4m2
Z

ŝ4Y

[
(t̂+m2

Z)2E1(ŝ, t̂)

+(û+m2
Z)2E1(ŝ, û)

]
−8m2

Zm
2
f F̃ (ŝ, t̂, û) , (A.60)

δaf
+−++(βZ , t̂, û;mf ) = 8ŝ

[ŝ2(4m2
f −m2

Z)
2Y

+
m2

Z

ŝ4

]
C0(ŝ)

+
4(ŝŝ4 − 2Y )

Y
(4m2

f −m2
Z)CZZ(ŝ)

+8m2
f (4m2

f −m2
Z)F̃ (ŝ, t̂, û) +

16m2
fY

ŝ4
DZZ(t̂, û)

− 4
Y

{[m2
Z(t̂+m2

Z)2

ŝ4
+ 4m2

f t̂
]
E1(ŝ, t̂)

+
[m2

Z(û+m2
Z)2

ŝ4
+ 4m2

f û
]
E1(ŝ, û)

}
, (A.61)

δvf
++00(βZ , t̂, û;mf ) = −8m2

fm
2
Z F̃ (ŝ, t̂, û) +

4m2
Z

ŝ
E2(t̂, û) ,

(A.62)

δaf
++00(βZ , t̂, û;mf ) = −8m2

f

(
m2

Z +
2ŝ2m2

f

m2
Z

)
F̃ (ŝ, t̂, û)

−4
ŝ
(4m2

f −m2
Z)E2(t̂, û) − 16m2

f ŝ

m2
Z

C0(ŝ) , (A.63)

δvf
+−00(βZ , t̂, û;mf ) = − 4ŝm2

Z

ŝ4Y
(ŝ2ŝ4 − 4Y )C0(ŝ)

−4m2
Z

Y
(ŝŝ4 − 2Y )CZZ(ŝ)

−8m2
Zm

2
f F̃ (ŝ, t̂, û) − 4m2

Z

ŝ4Y

[
(2t̂2 + ŝt̂+ 2m4

Z)E1(ŝ, t̂)

+(2û2 + ŝû+ 2m4
Z)E1(ŝ, û)

]
, (A.64)
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δaf
+−00(βZ , t̂, û;mf ) = − 8m2

f

m2
Z

{
ŝ
(ŝ22
Y

− 2
)
C0(ŝ)

+ŝ2
(ŝŝ4
Y

− 2
)
CZZ(ŝ) − 4m2

ZY

ŝ4
DZZ(t̂, û)

+
(t̂2 +m4

Z)
Y

E1(ŝ, t̂) +
(û2 +m4

Z)
Y

E1(ŝ, û)

+(2ŝ2m2
f +m4

Z)F̃ (ŝ, t̂, û)

}

−4m2
Z

Y

[ ŝ
ŝ4

(ŝ2ŝ4 − 4Y )C0(ŝ)

+(ŝŝ4 − 2Y )CZZ(ŝ) +
(2t̂2 + ŝt̂+ 2m4

Z)
ŝ4

E1(ŝ, t̂)

+
(2û2 + ŝû+ 2m4

Z)
ŝ4

E1(ŝ, û)
]
, (A.65)

δvf
+++0(βZ , t̂, û;mf ) = 0 , (A.66)

δaf
+++0(βZ , t̂, û;mf )/∆ = − 4(ŝ4 + βZ ŝ)m2

f

ŝ4m2
Z

×
{

(û− t̂)
[
2C0(ŝ) +

1
ŝ
E2(t̂, û)

]
−(ŝt̂− 2m2

Z t̂1)DZZ(ŝ, t̂)

+(ŝû− 2m2
Z û1)DZZ(ŝ, û)

}
, (A.67)

δvf
+−+0(βZ , t̂, û;mf )/∆ = − 4ŝ

ŝ4
(t̂− û− βZ ŝ4)C0(ŝ)

−4(t̂− û− βZ ŝ)CZZ(ŝ)

+
16βZm

2
fY

ŝ4
F̃ (ŝ, t̂, û) − 4(1 + βZ)(t̂+m2

Z)
ŝ4

E1(ŝ, t̂)

+
4(1 − βZ)(û+m2

Z)
ŝ4

E1(ŝ, û) , (A.68)

δaf
+−+0(βZ , t̂, û;mf )/∆ = − 4m2

f

m2
Z ŝ

(t̂− û+ βZ ŝ)

×
{

2ŝC0(ŝ) + E1(ŝ, t̂) + E1(ŝ, û)

+
(ŝ+ 4m2

Z)Y
ŝ4

DZZ(t̂, û)
}

+
16βZm

2
fY

ŝ4
F̃ (ŝ, t̂, û)

−4ŝ
ŝ4

(t̂− û− βZ ŝ4)C0(ŝ)

−4(t̂− û− βZ ŝ)CZZ(ŝ) − 4(1 + βZ)(t̂+m2
Z)

ŝ4
E1(ŝ, t̂)

+
4(1 − βZ)(û+m2

Z)
ŝ4

E1(ŝ, û) , (A.69)

δvf
+−+−(βZ , t̂, û;mf ) = −4ŝ

[ŝ2
ŝ4
C0(ŝ) + CZZ(ŝ)

]

− 2
ŝ4

[
(ŝ2 + βZ ŝ)E1(ŝ, t̂) + (ŝ2 − βZ ŝ)E1(ŝ, û)

]

− 4ŝm2
f

ŝ4
[ŝ4 + βZ(t̂− û)]F̃ (ŝ, t̂, û) , (A.70)

δaf
+−+−(βZ , t̂, û;mf ) = −4ŝ

[ŝ2
ŝ4
C0(ŝ) + CZZ(ŝ)

]
− 2
ŝ4

[
(ŝ2 + βZ ŝ)E1(ŝ, t̂) + (ŝ2 − βZ ŝ)E1(ŝ, û)

]

− 4ŝm2
f

ŝ4
[ŝ4 + βZ(t̂− û)][F̃ (ŝ, t̂, û) − 2DZZ(t̂, û)]

−16m2
fY

ŝ4
DZZ(t̂, û) . (A.71)

We have checked that the fermion loop results in (A.52-
A.71) agree with those of [12], apart from the overall sign,
provided that the replacement

∆ref. [12] −→ − 2
ŝ
∆ (A.72)

is made13. In addition to this, it should be remembered
that our definitions of t̂ and û should be interchanged
when comparing with [12], and that these authors do not
use the JW convention.

Appendix B: The asymptotic γγ → ZZ
amplitudes in SM

Since the expressions in Appendix A for the γγ → ZZ
helicity amplitudes are rather complicated, it would be
useful to quote their asymptotic expressions involving log-
arithmic functions only. To this purpose, we need the
asymptotic expressions for the Passarino-Veltman func-
tions in (A.15, A.16),

BZ(ŝ) ' − ln
( −ŝ− iε

−m2
Z − iε

)
, (B.1)

C0(ŝ) =
1
2ŝ

[
ln

(√
1 − (4m2/ŝ) + iε− 1√
1 − (4m2/ŝ) + iε+ 1

)]2

' 1
2ŝ

[
ln
(−ŝ− iε

m2

)]2
, (B.2)

which should be valid for |ŝ| � (m2, m2
Z), [23,1,3].

For the 1-loop functions CZ(ŝ), CZZ and DZZ , con-
taining one or two legs at the Z-mass shell, the asymp-
totic expressions depend also on the threshold singularity
through [23]

aZ ≡
√

1 − 4m2

m2
Z

+ iε . (B.3)

13 A factor of ŝ is apparently missing in the first term within
the curly brackets in (3.14) of [12].
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Taking then |ŝ| � (m2, m2
Z), and using the definition

ãZ ≡ π2 −
[
ln
(

1 + aZ

2

)
− ln

(
1 − aZ

2

)]2

+2iπ
[
ln
(

1 + aZ

2

)
− ln

(
1 − aZ

2

)]
, (B.4)

we get

CZ(ŝ) ' 1
ŝ

{
1
2

ln2
(−ŝ− iε

m2

)
+
ãZ

2

}
, (B.5)

CZZ(ŝ) ' 1
ŝ

{
1
2

ln2
(−ŝ− iε

m2

)
+ ãZ

}
, (B.6)

while for (|ŝ|, |û|) � (m2, m2
Z), we get [23]

DZZ(ŝ, t̂) ' 2
ŝt̂

{
ln
(−ŝ− iε

m2

)
ln
(−t̂− iε

m2

)

−π2

2
+ ãZ

}
. (B.7)

The principal value of the logarithms is understood in
(B.1, B.2, B.5-B.7), with the cuts along the negative real
axis. These asymptotic expressions should be quite accu-
rate in the indicated regions, except in the case where
mZ � m; which leads to aZ → 1 and |ãZ | → ∞, disturb-
ing ( B.5-B.7). Thus, for e.g. CZZ(ŝ) at ŝ = −m4

Z/m
2(1−

4m2/m2
Z) � m2

Z , the exact expression in (A.18) differs
considerably from the asymptotic result of (B.6). Never-
theless, it is shown below that these mass singularities can-
cel in the asymptotic behaviour of the physical γγ → ZZ
amplitudes. A similar property has also been observed for
the γγ → γZ case [3].

This cancellation should be a consequence of gauge in-
variance and a reflection of the fact that although some
single log imaginary terms remain in the asymptotic ex-
pressions for the physical amplitudes of these processes,
there are no overlapping soft and collinear singulaties which
would had led to double-log Sudakov type terms [24]. We
come back to this at the end of this Appendix.

Before turning to this though, we remark on the basis
of (B.5-B.7), that for (ŝ ∼ |t̂| ∼ |u|) � (m2

Z , m
2), the

corresponding asymptotic expressions for the functions in
(A.22 -A.24) are

F̃ (ŝ, t̂, û) ' 2
ŝû

ln
(−ŝ− iε

m2

)
ln
(−û− iε

m2

)

+
2
ŝt̂

ln
(−ŝ− iε

m2

)
ln
(−t̂− iε

m2

)

+
2
t̂û

ln
(−t̂− iε

m2

)
ln
(−û− iε

m2

)
, (B.8)

E1(ŝ, t̂) ' π2 − ãZ + ln2
(−t̂− iε

m2

)

−2 ln
(−ŝ− iε

m2

)
ln
(−t̂− iε

m2

)
, (B.9)

E2(t̂, û) ' π2 +
[
ln
(−t̂− iε

m2

)

− ln
(−û− iε

m2

)]2
. (B.10)

In the remaining part of this Appendix we give the
asymptotic expressions for the ten amplitudes in (A.11,
A.12, A.13), by neglecting terms of O(m2

Z/ŝ , mZm/ŝ ,
m2/ŝ). These should hold in the region

ŝ ∼ |t̂| ∼ |û| � (m2
Z , m2) (B.11)

where m is the mass of the scalar or fermion particle circu-
lating in the loop. Thus, for the scalar loop contributions,
using (A.32) and (A.34-A.41), we find

AS
++++ ' 4 − 4ût̂

ŝ2

[
ln2
∣∣∣ t̂
û

∣∣∣+ π2
]

+
4(t̂− û)

ŝ
ln
∣∣∣ t̂
û

∣∣∣ , (B.12)

AS
+−+− ' 4 − 4ŝt̂

û2

[
ln2
∣∣∣ŝ
t̂

∣∣∣− 2iπ ln
∣∣∣ŝ
t̂

∣∣∣]

+
4(ŝ− t̂)

û

[
ln
∣∣∣ŝ
t̂

∣∣∣− iπ
]
, (B.13)

AS
+++0 '

√
ŝm2

Z

2ût̂

{
− 8(t̂− û)

ŝ
+

4(t̂− û)t̂û
ŝ3

[
ln2
∣∣∣ t̂
û
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]

+
16ût̂
ŝ2

ln
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û
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}
, (B.14)

AS
+−+0 '

√
ŝm2

Z

2ût̂

{
− 8û
ŝ

+
4t̂
û

[
ln2
∣∣∣ŝ
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+
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[
ln
∣∣∣ŝ
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∣∣∣− iπ
]}

, (B.15)

while the rest are found to be very small, i.e.

AS
+++− ' AS

++−− ' AS
+−++ ' −4 , (B.16)

AS
+−00 ' AS

++00 ' AS
++−0 ' 0 . (B.17)

The corresponding asymptotic expressions for the W
loop contributions are given by (A.42, A.43) and the rela-
tions

δW
++++ ' 16c2W

{
ln2
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∣∣∣ (B.18)

+
ŝ

t̂
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∣∣∣ t̂

m2
W

∣∣∣ ln ∣∣∣ŝ
û

∣∣∣− iπ
[ŝ
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,
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{
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+ iπ
[û
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ln
( ŝ
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W
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ŝ
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ŝ

∣∣∣− (ŝ2 + t̂2)
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,
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δW
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ŝ
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m2
W

)
, (B.21)
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2ût̂

{(
− 2û
ŝ

+ 32c2W
t̂

ŝ
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− 4û
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[
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δW
+++− ' δW

++−− ' δW
+−++ ' δW

++−0 ' 0 . (B.24)
The asymptotic expressions for the fermion loop con-

tributions may be expressed from (A.53, A.55, A.56) and
the results
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{
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++00 ' δvf
+++0 ' 0 , (B.27)
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ln2
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2ût̂
8m2û
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δvf
+++− ' δaf

+++− ' δvf
++−− ' δaf

++−− ' δvf
+−++

' δaf
+−++ ' δvf

++−0 ' δaf
++−0 ' 0 . (B.33)

As promised, the asymptotic expressions of the helicity
amplitudes derived from the preceding formulae, do not
depend on the parameter aZ of (B.3, B.4) entering the
Passarino-Veltman functions in (B.5-B.7, B.9). We also
notice that the Sudakov-type log-squared terms in (B.2,
B.5 - B.10) cancel out, when substituted to these ampli-
tudes, because of Bose symmetry. Therefore, in the asymp-
totic region indicated in (B.11), the only large contribu-
tions come from the single-logarithm imaginary terms ap-
pearing in δW

++++ and δW
+−+−; compare (B.19 B.20). These

terms are the only ones which increase (logarithmically)
with ŝ.
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